div', {current: 'active', initialIndex: 0}); });"; $stylesheets = ''; #Additional Stylesheets (list full path) use array(""); $javascripts = ''; #Additional Javascripts (list full path) use array(""); $head = ''; #Use this for anything special that needs to go in the head $body = ''; #Use this for anything special that needs to go in the opening body tag $bodyopen = ''; #Use this for anything special that needs to go right after the opening body tag $bodyclose = ''; #Use this for anything special that needs to go right before the closing body tag $maindoc = ''; #Use this to change the YUI main doc type - ID tag $mainclass = ''; #Use this to change the YUI main doc type - class tag $pricing = 'Yes'; #If this page has pricing, say yes. use to load one price file for ECU / Product / Motul $f_gallery = ''; #If Flickr Gallery, Say yes. $f_photo = ''; #If Flickr Photo, Say yes. if (empty($h1title)){ $h1title = $title; } #Makes H1 title the same as the title if it's not different ?>

The APR Intercooler System dramatically lowers charge air temperature and resists heat soak far better the factory intercooler system. Through a massively increased core volume, superior intercooler core design and smooth, cast end tanks, APR’s engineers were able to create an intercooler capable of supporting power levels well beyond that of the factory unit. Expect increased horsepower and torque and dramatically prolonged performance.

Intercooler Ambient Air Fins

Intercooler Ambient Air Fins

Each unit uses a high quality, bar and plate core with staggered and louvered fins. The Intercooler’s exceptionally tall design and fin structure exposes the core to a greater volume of airflow than possible with the factory or similar aftermarket short and thick core designs. With more of the intercooler directly exposed to the elements, cooling effectiveness dramatically increases.

Intercooler Charge Air Fins

Intercooler Charge Air Fins

Internally, the APR Intercooler System features a staggered and louvered fin design with a core density chosen as a balance between cooling effectiveness and pressure drop. Due to the core’s massive volume, the balance was easily adjusted to favor minimal pressure drop while still providing superior effectiveness compared to the stock tube and fin design.

APR Easy-Flow Silicone Hoses


Multi-ply silicone hoses provide an unrestricted path for airflow entering and exiting the intercooler. The hoses are engineered to properly connect the intercooler to the factory charge piping system.

APR’s Easy-Flow Silicone Hose design features stepped mounting surfaces for smooth transitions from one pipe to another. Traditional designs simply sit on top of each other, often resulting in a disruptive airflow path. By using the stepped design, hoses fit properly without airflow restrictions, resulting in the most ideal path for moving air through the intercooler and into the engine.


Intercooler Thickness
Intercooler Outlet
Intercooler Mounting Points

Testing Data

Several tests were done in order to prove the differences between the stock intercooler and the APR one. One test for thermal effectiveness involved placing the car on the dyno with our normal assortment and arrangement of cooling fans. The car was then run through a rigorous testing procedure that involved allowing it to idle to a normal operating temperature, and then running it through five power runs.

During each run, the engine speed was brought to 2000 rpm for fifteen seconds. This allows the air to run throughout the system and allows the intake air temperature to normalize and negate heat soak from the car sitting at idle. The car was then taken from 2000rpm to 6800rpm at full throttle under load over the next thirty seconds. The car was then allowed to idle for one minute before the next run was started. Each lighter line on the graph above represents each power run, and the darker line represents the average over five runs.


The stock intercooler was tested on one day, the APR intercooler was installed, and the testing repeated the next day. The conditions were very similar on both days, but it was slightly hotter (3ºF) on the day the APR intercooler was tested. Most alarming about this entire test was the fact that during the third run with the stock intercooler, the car began to pull boost and timing in order to protect itself from the high intake temperatures. The car also exhibited this protective behavior in both the fourth and fifth runs as well. The APR intercooler performed as we expected, keeping the intake charge temps almost 40ºF lower by the end of the fifth run.

To see how the APR Intercooler compared to the competition, take a look at our competitive analysis!
Application Guide
Make Model Engines Drivetrains Part Number Price Exc. VAT Price Inc. VAT  
*The APR Intercooler core will fit the Audi TT with the new 2.0 TFSI Audi Valve Lift engine, but requires the OEM 2.0 TSI Discharger Pipe: 1K0 145 840 R and 1K0 145 769 J
Audi A3 / S3 (MK2) 1.8T / 2.0T All
Audi TT / TT-S (MK2) 1.8T / 2.0T* All
Seat Altea 1.8T / 2.0T All
Seat Leon / Cupra / Cupra R / Supercopa (MK2) 1.8T / 2.0T All
Seat Toledo (MK2) 1.8T / 2.0T All
Skoda Octavia / VRS (MK2) 1.8T / 2.0T All
Skoda Superb (B6) 1.8T / 2.0T All
Skoda Yeti 1.8T / 2.0T FWD
VW Beetle (MK2) 1.8T / 2.0T (EA888 Gen 1 Only) All
VW Beetle (MK2) 1.8T / 2.0T (2013.5+ EA888 Gen 3 Only) All
VW CC 1.8T / 2.0T All
VW Eos 1.8T / 2.0T All
VW Golf / GTI / R (MK5 & MK6) 1.8T / 2.0T All
VW Jetta / GLI / Bora / Vento / Sagitar (MK5 & MK6) 1.8T / 2.0T (EA113 & EA888 Gen 1 Only) All
VW Jetta / GLI (MK6) 1.8T / 2.0T (2013.5+ EA888 Gen 3 Only) All
VW Passat / Magaton (B6 & B7) 1.8T / 2.0T (EA113 & EA888 Gen 1 Only) All
VW Passat (B7) 1.8T / 2.0T (2013.5+ Gen 3 Only) All
VW Scirocco / R 1.8T / 2.0T All
VW Tiguan 1.8T / 2.0T FWD
VW Tiguan 1.8T / 2.0T AWD